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Abstract
The magnetic structure of the cubic compound CeAl2 is incommensurate and double-k. The
moments on the two Ce sites describe two elliptical helices of opposed chiralities and lie in the
(110) plane, with their Fourier components mk close to the [111] direction. Recent symmetry
considerations, including for the first time the inversion center of the crystal, have reduced the
number of parameters of this structure and have underlined the existence of a phase difference
between the projections mk

x , mk
y and mk

z of mk . Up to now, although many neutron
investigations have been carried out on CeAl2 single crystals, no set of magnetic intensities
was available which was large and good enough to check whether this phase difference exists
or not.

We have measured such a set of data, taking great care of the instrumental resolution in
order to avoid unwanted contributions to the intensities from other domains. As the magnetic
form factor of the �7 ground state of CeAl2 depends very much on the direction of the applied
field, it was necessary to go through a self-consistent determination of the magnetic form factor
in the direction of the Fourier components mk to obtain good agreement between the refined
magnetic structure and the experimental data. The resulting Fourier components are close but
not exactly along the [111] direction and their departure from this direction at low temperature
reduces the ellipticity of the helices. The phase difference between the projections mk

x , mk
y and

mk
z is small but undoubtedly exists and is temperature dependent. It leads to a small distortion

of the elliptical helices, with magnetic moments slightly out of the (110) plane.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

CeAl2 is a Kondo compound which orders antiferromagneti-
cally at low temperature. Very few compounds have undergone
as many steps for a complete determination of their magnetic
structure. It has been constantly studied for 30 years by neu-
tron scattering, with more and more sophisticated investigation
methods. During this period, group theory analyses first con-
firmed the compatibility of the proposed magnetic structures
with the crystal symmetry, and then added more details to be
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3 Present address: dr11, CNRS, BP166, 38042 Grenoble Cedex 9, France.

checked experimentally. It is the aim of this paper to give an
answer to these latter propositions.

CeAl2 crystallizes in the fcc Laves phase, with two
Ce atoms in the primitive unit cell, Ce1 and Ce2 in
±(1/8, 1/8, 1/8) along one diagonal of the cube, at the
same positions as the carbon atoms in the diamond structure
(figure 1). A first neutron diffraction experiment made on a
CeAl2 powder established the appearance of magnetic lines
below TN = 3.8 K. These lines, though very faint, were
indexed with a propagation vector k = (1/2 + δ, 1/2 −
δ, 1/2), with δ = 0.112, which means an antiferromagnetic
structure along the [111] diagonal, propagating sinusoidally
along a direction [110], perpendicular to the former one. The
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Figure 1. Crystal structure of CeAl2. For a better comprehension of
the figure, the cell has been translated by (1/8, 1/8, 18).

treatment of the magnetic intensities led to a structure where
the moments of the two Ce neighbors Ce1 and Ce2, on the
same [111] diagonal, are equal and opposed to each other. The
Fourier components mk

1 and mk
2 which are associated with

their magnetic moments m1(l) and m2(l) in the cell labeled
l through the relation

m j (l) =
∑

k

mk
j e

−2iπk·l + cc (1)

are aligned along the [111] diagonal of the cube [1]. Later,
a spherical polarization analysis experiment on a single
crystal (neutron diffraction polarization analysis in the three
dimensions) came to the result that the Fourier components are
not exactly aligned along the diagonal of the cube and that
the deviation from this direction keeps increasing when the
temperature decreases below TN [2].

Attempts to check whether this structure is single-k or
multi-k were also undertaken. By applying successively
uniaxial pressure and magnetic field aligned along the [112]
direction of the crystal, Barbara et al [3, 4] ruled out the triple-
k structure suggested by [5]. Then Forgan et al [6], observing
the intensity changes when a magnetic field is applied far
from the symmetry axes of the crystal, proved unambiguously
that the structure is double-k: two propagation vectors of
the type k1 = (1/2 + δ, 1/2 − δ, 1/2) and k2 = (1/2 +
δ, 1/2 − δ,−1/2) are coupled. These equivalent propagation
vectors share the same sinusoidal part (δ,−δ, 0), the part
which is superimposed on two different antiferromagnetic
propagation vectors: (1/2, 1/2, 1/2) and (1/2, 1/2,−1/2).
As is well known, the phase between the two Fourier vectors
mk1 and mk2 cannot be determined by experiment. The authors
proposed a π/2 phase as being the phase most compatible with
the fact that Ce3+ is a Kramers ion, which, in principle, should
have a constant moment at low temperature. Actually, the π/2
phase provides for the two sites elliptical helices of opposed

chiralities instead of sinusoids. As a matter of fact, helices are
more suitable than sinusoids for a Kramers ion as its moment
cannot be reduced to zero at very low temperature. Arguing
on free energy considerations, Harris et al [7] agreed with this
π/2 phase.

In the meantime, group theory analyses figured out the
relations which are imposed by the symmetry operators (crystal
symmetries and propagation vector symmetries) on the Fourier
components mk

jα and mk
jβ (α and β for the components x , y and

z of atoms Ce1 and Ce2). The usual representation analysis,
conserving in the little group Gk only the operators which
keep the propagation vector unchanged, led to the following
relations [8]:

mk
1x = mk

x mk
2x = −mk

1y

mk
1y = mk

y mk
2y = −mk

1x

mk
1z = mk

z mk
2z = −mk

1z.

(2)

The magnetic structures which were deduced from the
experiments were compatible with these relations, with the
experimental extra relations mk

x = mk
y = mk

z for [1] and mk
x =

mk
y for [2]. The relations (2) are often considered as defining

a magnetic structure depending only on three parameters: mk
x ,

mk
y , mk

z . But one has to keep in mind that these parameters are
complex, which means that such a structure is actually defined
by five quantities: three lengths and two phases, the third phase
being defined arbitrarily.

A recent theoretical investigation [9, 10] included the
inversion operator I in the symmetry analysis. In particular,
in terms of group theory, it associated the operator I with
the conjugation operator C in the little group Gk . Each of
these operators changes k in −k, but their product keeps the
propagation vector unchanged. This corepresentation analysis
brought more constraints than the former representation
analysis: a constraint on the lengths (the x and y components
of the moments must have equal lengths), and a constraint on
the phases:

mk
1x = |mk

x |eiϕ mk
2x = −|mk

x |e−iϕ = −mk
1y

mk
1y = |mk

x |e−iϕ mk
2y = −|mk

x |eiϕ = −mk
1x

mk
1z = |mk

z | mk
2z = −|mk

z | = −mk
1z

(3)

where |mk
x | and |mk

z | are real quantities. Only three parameters
remain to characterize the magnetic structure, among them a
phase ϕ which was not, up to now, taken into account by the
experimentalists.

At this point, it was realized that though a large number of
neutron investigations have been performed on this compound,
no single crystal data collection was available, large enough
and good enough to check whether this phase ϕ exists or not.
We have decided to measure such a good quality data set. The
aim of this paper is to describe this experiment, to present the
final magnetic structure of CeAl2 as it has been obtained from
these data and the way the different structural parameters of
the ordered magnetic structure (lengths and phase) change with
temperature.
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Figure 2. First Brillouin zone of CeAl2.

2. Experimental details and results

2.1. The magnetic domains and the star of vectors k: an
experimental problem

The magnetic reflections obtained from a single crystal arise
from different magnetic domains in relation to the number of
equivalent k vectors, that is the star of k. The vector k =
(1/2+δ, 1/2−δ, 1/2) lies on the first Brillouin zone boundary
and may be decomposed in a sum (1/2, 1/2, 1/2)+(δ,−δ, 0).
There are eight possibilities for the direction (1/2, 1/2, 1/2),
and for each of them, six possibilities for a direction (δ,−δ, 0)
perpendicular to (1/2, 1/2, 1/2). Altogether, there are then
48 vectors but 24 of them can be deduced from the 24 others
by a translation of type (1, 1, 1), a vector of the reciprocal
lattice. We can then say that the star of vector k contains
24 vectors, although there are 48 vectors at the surface of the
Brillouin zone. The magnetic reflections are located on small
hexagons around each position (h ± 1/2, k ± 1/2, l ± 1/2)
of the reciprocal space which are the centers of the eight
hexagonal faces of the Brillouin zone (figure 2). As δ is very
small (δ = 0.112), the hexagons are very narrow and it is a
delicate operation to measure the integrated intensity of one
of the magnetic spots without it being contaminated by the
others. As will be seen in the following, great care has to be
taken.

Magnetic domains of type K are present. As vectors k and
−k are associated in the same domain, the number of domains
is half the number of vectors of the star of k, that is 12 domains
K in the case of a single-k structure. For a multi-k structure,
different vectors k are coupled together to form one magnetic
domain and their number is reduced consequently: for instance
for this double-k structure, six magnetic domains remain.

2.2. A first experiment on D15

A first experiment was performed on the single crystal
diffractometer D15 at ILL (Grenoble, France). This instrument
is a diffractometer with a lifting detector arm, located on an
inclined thermal beam, on which the wavelength is fixed and
equal to 1.17 Å. The CeAl2 sample was a crystal of dimensions
7 × 6 × 5 mm3, mounted with its axis [110] vertical. It was
installed in an orange cryostat able to go down to a temperature
as low as 1.25 K.

We collected two sets of magnetic reflections at two
temperatures: 1.25 K and 2.95 K. The first set consisted of
reflections of type (h ± (1/2 ± δ), k ± 1/2, l ± (−1/2 ± δ))

while the second set was composed of reflections (h ± (1/2 ±
δ), k ∓1/2, l ±(−1/2±δ)). In both collections, the associated
nuclear reflections (hkl) were mainly in the horizontal plane,
that is of type (hhl). The rocking curves of several magnetic
reflections appeared to be non-single peaks, indicating that the
resolution of the instrument was not tight enough to measure
one of the six spots of the hexagon without being contaminated
by the others.

2.3. A second experiment on D23

After the failure of the first experiment, we performed a second
experiment on the diffractometer D23, which is located on
one of the thermal guides of the ILL and which is also a
diffractometer with a lifting detector arm. We measured the
same CeAl2 crystal, with the same axis [110] vertical, but we
optimized the resolution conditions:

(i) we chose a wavelength of 2.376 Å, double the former one,
(ii) we measured reflections of type (h ±(1/2+δ), k ±(1/2−

δ), l ± 1/2), with also most of the (hkl) reflections in the
horizontal plane.

With this choice of wavelength the angular separations
between the magnetic satellites in the hexagons were about
twice as large as in the D15 experiment. We checked, by
different scans, and particularly by scanning the lifting detector
angle ν, that the measurement of one of the magnetic spots
did not include contributions from any of the five other spots
of the same hexagon. At three temperatures, 1.3, 2.6 and
3.5 K, we measured the integrated intensities of 60 of these
magnetic spots. Once the intensities of the Friedel pairs had
been averaged, this number went down to 32.

2.4. Structure refinements of the D23 measurements

The magnetic intensity I (κ = H ± k) for a reflection (hkl)±
corresponding to the reciprocal vector H = (hkl) is:

I (κ = H ± k) = FM⊥(κ) · F ∗
M⊥(κ) · δ(κ − H ∓ k) (4)

where FM⊥(κ) is the projection of the magnetic structure
factor FM(κ) on the plane perpendicular to κ , and FM (κ) is
expressed as a function of the Fourier components mk

j of the
atom j as:

FM(κ) =
∑

j

mk
j f j (κ) · e2iπκ·r j . (5)

3



J. Phys.: Condens. Matter 20 (2008) 135204 J Schweizer et al

Table 1. Ratio |mk
z |/|mk

x | and phase ϕ deduced from the structure refinements at various temperatures T . θH and θmk are the angles of the
applied field H and the Fourier component mk with the [111] direction. The reliability factor is defined as

R =
√∑

i pi(I obs
i − I calc

i )2/
∑

i pi(I obs
i )2 and χ2 = ∑

i pi (I obs
i − I calc

i )2/(Nobs − Nvar) with pi = 1/σ 2
i .

T (K) f R χ2 ϕ (deg) |mk
z |/|mk

x | θmk (deg) θH (deg)

1.30 dip. 21.3% 29.8 =0 0.993(0.054) −0.20(1.46) —
1.30 calc. 7.04% 3.25 =0 1.046(0.015) 1.22(0.40) 1.20
1.30 calc. 6.93% 3.27 −1.21(1.06) 1.044(0.016) 1.18(0.41) 1.15

2.68 dip. 19.2% 22.1 =0 0.958(0.044) −1.16(1.24) —
2.68 calc. 7.73% 3.59 =0 1.024(0.016) 0.65(0.43) 0.65
2.68 calc. 7.71% 3.69 −0.62(1.25) 1.023(0.017) 0.63(0.44) 0.65

3.52 dip. 13.2% 11.6 =0 0.929(0.029) −1.97(0.82) —
3.52 calc. 6.46% 2.78 =0 0.989(0.014) −0.29(0.38) −0.28
3.52 calc. 5.89% 2.38 3.9(1.4) 0.988(0.013) −0.33(0.35) −0.32

f j (κ) is the magnetic form factor associated with the atom j .
As mentioned in section 1, the Fourier components mk

1 and mk
2

for the two Ce atoms satisfy the relations (3) and depend on the
three parameters |mk

x |, |mk
z | and ϕ.

We have refined the ratio |mk
z |/|mk

x | and ϕ using the
program MXD [11]. The absolute values of |mk

z | and
|mk

x | could not be determined separately because of strong
extinction on the nuclear reflections. The previous experiment
on powder had led to a value of |mk

z | = |mk
x | = 0.44 ±

0.05 μB. At first, the values used for f j (κ) were given by
the isotropic dipolar form factor 〈 j0〉 + c2〈 j2〉 of the Ce3+
ion (c2 = 1.6) [12, 13]. The reliability factors R at the
three temperatures are fairly bad, ranging between 13% and
21% (see table 1). The agreement is so bad that refining
the value of ϕ was unreasonable and its value was fixed to
zero. We noticed that among the 32 measured reflections,
about 1/3 of them presented systematic discrepancies, which
could not be attributed to measuring uncertainties: reflections
calculated as equal were in fact observed equal but with
intensities which did not fit the model. This feature suggested
to us that the magnetic form factor that we used was
inadequate.

As a matter of fact, previous polarized neutron diffraction
studies have evidenced very unusual form factors for the Ce3+
ion of CeAl2 [14]. These investigations were carried out in
the paramagnetic state, with a magnetic field applied either
along the two-fold or the four-fold axis. The striking aspect
of the form factor is the extreme scattering of the experimental
points, particularly when the field was along the two-fold
axis. In our experiment, the direction of mk

j being close to
the [111] direction, we calculated the magnetic form factor
for each measured reflection with a three-fold reference axis
(see appendix A) using the wavefunctions of the different
levels. These were obtained by diagonalizing the Hamiltonian
of the system, which is the sum of crystal electric field and
Zeeman terms. The crystal field Hamiltonian depends only
on the parameter B4 = 0.29 K (corresponding to a splitting
of 100 K [15]). We assumed no exchange contribution and
a field of 1 T applied in the plane (110) at a small angle θH

from [111].
As the Fourier component is not exactly along [111], the

refinement process was performed in a self-consistent way
until the final direction of mk is the same as the direction

0
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Figure 3. Calculated cerium magnetic form factor in CeAl2 for an
applied field at θH = 1.15◦ from the three-fold axis [111]. The
dotted line is the dipolar spherical form factor.

of the applied field taken to calculate the form factor used
in the refinement (θmk = θH ). The final form factor, which
is very sensitive to the direction of the applied field, is very
slightly sensitive to its value. It is compared to the dipolar
value in figure 3 and one can notice that it is now very
anisotropic with large deviations from the dipolar values for
most reflections. Results of the refinements at the three
temperatures are shown in table 1. The reliability factors are
much better. Refining the phase parameter ϕ also improves
the refinements and the values of all parameters are given
in table 1. The calculated intensities are compared to the
observed ones at the lowest temperature T = 1.3 K in
table 2.

The value of the ratio |mk
z |/|mk

x | determines the ellipticity
e of the helices: the moment amplitude varies between |mk

x |
√

2
in the (x, y) plane and |mk

z | along the z direction. As
temperature decreases, the ellipticity is reduced from e = 1.43
at 3.52 K to e = 1.35 at 1.30 K, the moments thus varying a
little less.
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[001] [110] [111]

-0.41 I5/2> + 0.91 I-3/2>  0.46 I3/2> + 0.65 I-1/2> - 0.61 I-5/2>  0.75 I1/2> + 0.67 I-5/2>

y

z
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z

x
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Figure 4. Magnetic densities for an infinitesimal field applied along the four-fold, two-fold and three-fold axes. To emphasize the
asymmetrical part of the magnetization, we have subtracted the spherical density corresponding to 〈 j0〉 + c2〈 j2〉. The ground state
wavefunctions are given for an axis of quantization along the applied field.

Table 2. Comparison of the calculated intensities I calc with the
observed intensities I obs (error σ ).

(hkl)± I obs σ I calc �I/σ

(000)+ 35.22 1.66 33.41 1.09
(111)− 28.95 1.77 33.41 −2.52
(002)− 149.61 4.26 143.10 1.53
(111)− 155.53 5.70 143.10 2.18
(220)− 520.18 12.68 515.20 0.39
(111)+ 507.49 12.44 515.20 −0.62
(222)− 3.77 4.03 1.68 0.52
(111)+ 8.56 5.04 1.68 1.37
(002)+ 57.49 7.39 55.89 0.22
(113)− 53.41 3.32 55.89 −0.75
(222)− 127.60 8.65 111.16 1.90
(113)+ 126.58 5.19 111.16 2.97
(331)− 222.11 8.23 205.33 2.04
(220)+ 226.17 8.52 205.33 2.45
(004)− 556.09 13.71 560.41 −0.32
(113)− 575.09 15.02 560.41 0.98
(224)− 134.89 5.91 126.87 1.36
(113)+ 135.45 6.72 126.87 1.28
(222)+ 0.29 5.08 0.06 0.05
(333)− 8.96 6.09 0.06 1.46
(004)+ 376.68 10.14 363.92 1.26
(115)− 387.63 12.69 363.92 1.87
(224)− 382.82 9.98 410.08 −2.73
(115)+ 382.41 11.77 410.08 −2.35
(333)− 358.15 9.74 393.45 −3.62
(224)+ 363.26 13.47 393.45 −2.24
(024)+ 15.76 10.34 36.24 −1.98
(442)− 13.67 8.40 17.02 −0.40
(331)+ 24.50 5.53 17.02 1.35
(135)− 22.39 5.04 32.36 −1.98
(115)+ 32.33 4.77 38.08 −1.21
(226)− 36.61 5.08 38.08 −0.29

3. Discussion

3.1. The magnetic form factor of a �7 ground state

The refinement of the CeAl2 magnetic structure has been
made possible only after having taken into account a detailed

analysis of the Ce form factor. As already said, the former
investigations in the paramagnetic state had shown that the Ce
atom in CeAl2 is in a �7 ground level and therefore its form
factor presents two characteristics: (i) it very much depends
on the direction of the applied magnetic field, and (ii) it
presents a very large scattering of the points instead of the usual
continuous curve versus sin θ/λ, reflecting a strong anisotropy
for the magnetization density.

Actually, the �7 ground state is a linear combination of
two almost degenerate wavefunctions (completely degenerate
in the absence of a magnetic field). The form factor depends
essentially on the direction of the applied magnetic field which
gives rise to some corresponding magnetization density, even
if the magnitude of the field is infinitesimal. To illustrate the
importance of this feature, we have represented in figure 4
the magnetization density and the wavefunction of the ground
state, once the degeneracy has been lifted by an infinitesimal
field applied along the four-fold, two-fold and three-fold axes
(the quantization axis z).

For this reason, for a magnetic structure without any field
applied on the crystal, the magnetization density is aroused
by the local molecular field in the direction of mk . In
our compound, two Fourier components mk1 and mk2 are
coupled and give rise to different magnetic satellites. One has
then to consider separately the component of the molecular
field associated with k1 (parallel to mk1 ) and the component
associated with k2 (parallel to mk2 ). Considering the data
treatment, one had to use a form factor for an applied field
close to the adequate three-fold axis, and to check, by a self-
consistent process, that the final direction of mk is the same
as the one taken to calculate the form factor used in the
refinement. Let us emphasize once more that if the form factor
depends in a very critical way on the direction of the applied
field, it depends only slightly on the exact value of this field.

3.2. Comparison with the polarization analysis

The refinement of the magnetic structure showed the existence
of two angles, both expected by the symmetry analysis, and
which are temperature dependent:

5
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• the angle θmk , which measures the deviation of the Fourier
vector mk from the [111] direction, is related to the ratio
|mk

z |/|mk
x | of the moduli of mk

z and mk
x . This angle is

counted positive in the direction of [001], negative in the
direction [110] and is null if |mk

x | = |mk
z |.

• the phase difference ±ϕ between components mk
x or mk

y

and component mk
z .

Both angles were anticipated by the symmetry analysis and
their magnitudes are determined, not by the symmetries, but
by the values of the exchange integrals. They were both
found to be small, but still significant. Their variation with
temperature below TN is very coherent and compares well
with the spherical polarization analysis experiment [2]. In
that experiment, the initial polarization is successively set
‘up’ (Pup vertical), ‘left’ (Pleft perpendicular to the scattering
vector) and ‘front’ (Pfront parallel to the scattering vector).
The CeAl2 crystal was aligned with the [211] axis vertical
and the rotation of the final polarization was determined after
scattering from the (1/2, −3/2 + δ, 5/2 − δ) reflection. As
the temperature decreased from TN down to 1.15 K, deviations
from the rotations expected for mk aligned along [111] were
found: the rotation of Pup changed from 180◦ to 176 ± 0.5◦,
that of Pleft changed from 0◦ to 5 ± 0.5◦, whereas that of Pfront

remained unchanged at 180◦. These deviations from 180◦ or
0◦ (4 ± 0.5◦ and 5 ± 0.5◦, respectively for �T = 2.65 K )
are representative of the small angle θmk (linear effect) and not
of the small phase ϕ (quadratic effect). With the values of
θmk found in our structure refinements (present paper), one can
calculate between 1.3 and 3.52 K (�T = 2.22 K) deviations
of 3.1◦ ± 1.2◦ for Pup and Pleft. The agreement with the
polarization analysis experiment is quite satisfactory.

3.3. Magnetic moments in the real space

The magnetic moments for the two sites Ce1 and Ce2 located
in a cell l (with lx , ly , and lz being integers or half integers in
the fcc unit cell) can be written as follows.

• If the magnetic structure were single-k:

m1(l) = mk
1e−2iπk·l + cc

m2(l) = mk
2e−2iπk·l + cc

(6)

where, according to relations (3) for the Fourier vector
mk

j , there is a phase difference ±ϕ of the components
mk

x and mk
y relative to the component mk

z . This would
involve m j x(l) and m j y(l) being no longer exactly equal,
resulting, as ϕ is very small, in a slight non-colinearity of
the corresponding sinusoid.

• In the case of the double-k structure of CeAl2, the
moments are the sum of the Fourier contributions due to k1

and to k2. Taking into account the fact that the magnetic
domains are twice as large as in the case of the single-k
structure, the moments can be written as:

m1(l) = (1/
√

2)(mk1
1 e−2iπk1·l + mk2

1 e−2iπk2·l + cc)

m2(l) = (1/
√

2)(mk1
2 e−2iπk1·l + mk2

2 e−2iπk2·l + cc).
(7)

There is an extra phase difference ω between the two
Fourier vectors mk1 and mk2 , which cannot be measured
by the experiment. Taking into account the fact that k1 =
(k1x, k1y, k1z) and k2 = (k1x, k1y,−k1z), the components
of the m

ki
j are the following; for the Ce1 atom:

mk1
1x = |mk

x |eiϕe−iω/2 mk2
1x = |mk

x |eiϕeiω/2

mk1
1y = |mk

x |e−iϕe−iω/2 mk2
1y = |mk

x |e−iϕeiω/2

mk1
1z = |mk

z |e−iω/2 mk2
1z = −|mk

z |eiω/2

and for the Ce2 atom:

mk1
2x = −|mk

x |e−iϕe−iω/2 mk2
2x = |mk

x |e−iϕeiω/2

mk1
2y = −|mk

x |eiϕe−iω/2 mk2
2y = |mk

x |eiϕeiω/2

mk1
2z = −|mk

z |e−iω/2 mk2
2z = −|mk

z |eiω/2

and, as k1x = 1/2 + δ, k1y = 1/2 − δ and k1z = 1/2, the
components of the moments on Ce1 and Ce2 are given by
the following; for the Ce1 atom:

m1x(l)= (4/
√

2)|mk
x | cos(πl0 − ϕ) cos(πlz + ω/2)

m1y(l)= (4/
√

2)|mk
x | cos(πl0 + ϕ) cos(πlz + ω/2)

m1z(l)= −(4/√2)|mk
z | sin(πl0) sin(πlz + ω/2)

and for the Ce2 atom:

m2x(l) = (4/
√

2)|mk
x | sin(πl0 + ϕ) sin(πlz + ω/2)

m2y(l) = (4/
√

2)|mk
x | sin(πl0 − ϕ) sin(πlz + ω/2)

m2z(l) = −(4/√2)|mk
z | cos(πl0) cos(πlz + ω/2)

with l0 = (lx + ly)+ 2δ(lx − ly).

The most probable value of ω is π/2 as it allows the
magnetic moments of the Ce3+ Kramers ion not to vanish with
the propagation and to behave in the same way on the two
cerium sites. Such a phase is also consistent with the fourth-
order terms in the free energy [7]. The values found for ϕ
are small and change from positive to negative as temperature
decreases. For ϕ = 0, m j x(l) = m j y(l) for both atoms Ce1

and Ce2. The corresponding magnetic structure is described
by two equivalent elliptical helices with opposed chiralities.
For ϕ 	= 0, the moments are no longer exactly in the bisecting
(110) plane. The elliptical helices are slightly distorted, with a
shift of the moment away from that plane. As ϕ is very small
at all temperatures, this distortion remains very weak.

4. Conclusion

The achievement of the CeAl2 magnetic structure determina-
tion by neutron diffraction on a single crystal has been a long
and rather delicate piece of work. There were experimental
difficulties connected with the instrumental resolution needed
to obtain clean and unpolluted magnetic reflection intensities.
There were difficulties in the data treatment due to a very un-
usual magnetic form factor, a form factor which strongly de-
pends on the direction of the Fourier components of the mag-
netic moments. There was also the delicate question of the
existence of a phase difference between the x , y and z projec-
tions of these Fourier components. It is important to be able to
conclude that this phase difference does exist and varies with
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temperature, even if it has been found to be very small. We
think that we now have a magnetic structure which goes along
with the theory and fits well with a good quality set of neutron
data.
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Appendix. Calculation of the magnetic form factor

The magnetic form factor f (κ) associated with the moment μ
and the wavefunction

|ψ〉 =
∑

M

aM |J M〉

of each energy level is deduced from the relation giving the qth
spherical components of the interaction operator Q̂⊥(κ) [16]:

Eq = (μ f (κ)⊥)q = 〈
ψ

∣∣Q̂⊥(κ)q
∣∣ψ

〉
(A.1)

with
〈
J M

∣∣Q̂⊥(κ)q
∣∣J M ′〉= (4π)1/2

∑

K K ′

{
AJ (K , K ′)+ BJ (K , K ′)

}

×
∑

QQ′
Y Q

K (̃κ)
〈
K ′Q′ J M ′|J M

〉 〈
K QK ′ Q′|1q

〉
(A.2)

where AJ (K , K ′) and BJ (K , K ′), which are linear combi-
nations of the radial integrals 〈 jK (κ)〉 [12], are the orbital
and spin contributions respectively. 〈K ′ Q′ J M ′|J M〉 and
〈K QK ′ Q′|1q〉 are Clebsch–Gordan coefficients and Y Q

K (̃κ) a
spherical harmonic. The component q = 0 refers to the z com-
ponent and q = ±1 to the components x ± iy.

In usual magnetic form factor measurements, the
scattering amplitudeμ f is measured along a direction z almost
perpendicular to the scattering vector Q (α � π/2). Generally,
only the term E0 = (μ f⊥)z is considered [17] and in this case
one uses μ f = (μ f⊥)z/ sin2 α.

For our calculation, the scattering vector Q points along
all the directions of space and, for some reflections, even close
to the direction of FM . We preferred to consider also the
terms E1 and E−1 which lead to (μ f⊥)x and (μ f⊥)y . The
value of the form factor is then obtained by the exact formula
μ f = |μ f⊥|/ sinα.
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